<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Generator" content="Microsoft Word 14 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri","sans-serif";}
p.MsoCommentText, li.MsoCommentText, div.MsoCommentText
{mso-style-priority:99;
mso-style-link:"Comment Text Char";
margin-top:0cm;
margin-right:0cm;
margin-bottom:10.0pt;
margin-left:0cm;
font-size:10.0pt;
font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p
{mso-style-priority:99;
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
{mso-style-priority:34;
margin-top:0cm;
margin-right:0cm;
margin-bottom:10.0pt;
margin-left:36.0pt;
mso-add-space:auto;
line-height:115%;
font-size:11.0pt;
font-family:"Calibri","sans-serif";}
p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
line-height:115%;
font-size:11.0pt;
font-family:"Calibri","sans-serif";}
p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
line-height:115%;
font-size:11.0pt;
font-family:"Calibri","sans-serif";}
p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:10.0pt;
margin-left:36.0pt;
mso-add-space:auto;
line-height:115%;
font-size:11.0pt;
font-family:"Calibri","sans-serif";}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri","sans-serif";
color:windowtext;}
span.CommentTextChar
{mso-style-name:"Comment Text Char";
mso-style-priority:99;
mso-style-link:"Comment Text";
font-family:"Calibri","sans-serif";}
p.Default, li.Default, div.Default
{mso-style-name:Default;
mso-style-priority:99;
margin:0cm;
margin-bottom:.0001pt;
text-autospace:none;
font-size:12.0pt;
font-family:"Times New Roman","serif";
color:black;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1703899232;
mso-list-type:hybrid;
mso-list-template-ids:-974647502 -1758723934 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;}
@list l0:level1
{mso-level-start-at:0;
mso-level-number-format:bullet;
mso-level-text:-;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Calibri","sans-serif";
mso-fareast-font-family:Calibri;
mso-bidi-font-family:"Times New Roman";}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="Default" style="text-align:justify"><b><span lang="EN-GB" style="font-size:11.0pt;font-family:"Calibri","sans-serif"">** Fully funded PhD position in Explainable deep learning methods for human-human and human-robot interaction**<o:p></o:p></span></b></p>
<p class="Default" style="text-align:justify"><b><span lang="EN-GB" style="font-size:11.0pt;font-family:"Calibri","sans-serif"">Department of Information Technology<o:p></o:p></span></b></p>
<p class="Default" style="text-align:justify"><b><span lang="EN-GB" style="font-size:11.0pt;font-family:"Calibri","sans-serif"">Uppsala University<o:p></o:p></span></b></p>
<p style="margin:0cm;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><strong><span style="font-family:"Calibri","sans-serif""><o:p> </o:p></span></strong></p>
<p class="MsoNormal" style="text-align:justify"><strong><span lang="EN-GB" style="font-family:"Calibri","sans-serif";color:black">Interested candidates should contact Prof. Ginevra Castellano by email (<a href="mailto:ginevra.castellano@it.uu.se"><span style="font-weight:normal">ginevra.castellano@it.uu.se</span></a>)
<u>by Friday 13<sup>th</sup> of March at the latest</u> to discuss the research project.
</span></strong><strong><span style="font-family:"Calibri","sans-serif""><o:p></o:p></span></strong></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><strong><span lang="EN-GB" style="font-family:"Calibri","sans-serif";color:black;font-weight:normal">Include the following documents in the email:</span></strong><o:p></o:p></p>
<p class="MsoListParagraphCxSpFirst" style="text-align:justify;text-indent:-18.0pt;line-height:normal;mso-list:l0 level1 lfo1">
<![if !supportLists]><span lang="EN-GB" style="color:black"><span style="mso-list:Ignore">-<span style="font:7.0pt "Times New Roman"">
</span></span></span><![endif]><span lang="EN-GB" style="color:black">A CV, including list of publications (if any) and the names of two
</span><span style="color:black">reference persons</span><span lang="EN-GB" style="color:black"><o:p></o:p></span></p>
<p class="MsoListParagraphCxSpMiddle" style="text-align:justify;text-indent:-18.0pt;line-height:normal;mso-list:l0 level1 lfo1">
<![if !supportLists]><span lang="EN-GB" style="color:black"><span style="mso-list:Ignore">-<span style="font:7.0pt "Times New Roman"">
</span></span></span><![endif]><span lang="EN-GB" style="color:black">Transcript of grades<o:p></o:p></span></p>
<p class="MsoListParagraphCxSpLast" style="text-align:justify;text-indent:-18.0pt;line-height:normal;mso-list:l0 level1 lfo1">
<![if !supportLists]><span lang="EN-GB" style="color:black"><span style="mso-list:Ignore">-<span style="font:7.0pt "Times New Roman"">
</span></span></span><![endif]><span lang="EN-GB" style="color:black">A cover letter of maximum one page describing the scientific issues in the project that interest you and how your past experiences fit into the project<o:p></o:p></span></p>
<p style="margin:0cm;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><b><span lang="EN-GB" style="color:black">Summary of project’s topic</span></b><b><span lang="EN-GB" style="color:black"><o:p></o:p></span></b></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><span lang="EN-GB" style="color:black">Human-human interaction (HHI) relies on people’s ability to mutually understand each other, often by making use of multimodal implicit signals that are
physiologically embedded in human behaviour and do not require the sender’s awareness. When we are engrossed in a conversation, we align with our partner: we unconsciously mimic each other, coordinate our behaviours and synchronize positive displays of emotion<i>.
</i>This tremendously important skill, which spontaneously develops in HHI, is currently lacking in robots.<o:p></o:p></span></p>
<p class="MsoCommentText" style="text-align:justify"><span lang="EN-GB" style="font-size:11.0pt;color:black">This project aims at building on advances in deep learning, and in particular on the field of Explainable Artificial Intelligence (XAI), which offers
approaches to increase the interpretability of the complex, highly nonlinear deep neural networks, to develop new machine learning-based methods that (1) automatically analyse and predict emotional alignment in HHI, and (2) bootstrap emotional alignment in
human-robot interaction.<o:p></o:p></span></p>
<p class="MsoCommentText" style="text-align:justify"><span lang="EN-GB" style="font-size:11.0pt;color:black">More information about the project can be found
</span><span style="font-size:11.0pt"><a href="https://www.math.uu.se/digitalAssets/396/c_396868-l_3-k_project-2-explainable-deep-learning-methods-for-human-human-and-human-robot-interaction.pdf"><span lang="EN-GB" style="color:black">here</span></a></span><span lang="EN-GB" style="font-size:11.0pt;color:black">.<o:p></o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><b><span lang="EN-GB" style="color:black"><o:p> </o:p></span></b></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><b><span lang="EN-GB" style="color:black">Requirements<o:p></o:p></span></b></p>
<p class="MsoNormal" style="text-align:justify"><span lang="EN-GB" style="color:black">The ideal PhD candidate is a student with an MSc in Computer Science, Machine Learning, Artificial Intelligence, Robotics or related field
<u>with a broad mathematical knowledge as well as technical and programming skills</u>. The components to be studied build on a number of mathematical techniques and the methods development involved in the project will require good command of the related areas;
central are mathematical optimization and probability theory. Experience and/or interest in the social sciences are also required. See further eligibility requirements
</span><a href="https://www.uu.se/en/about-uu/join-us/details/?positionId=317833"><span lang="EN-GB" style="color:black">here</span></a><span lang="EN-GB" style="color:black">.<o:p></o:p></span></p>
<p class="MsoCommentText" style="text-align:justify"><b><span lang="EN-GB" style="font-size:11.0pt;color:black"><o:p> </o:p></span></b></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><b><span lang="EN-GB" style="color:black">Further information<o:p></o:p></span></b></p>
<p class="MsoNormal" style="text-align:justify"><span lang="EN-GB" style="color:black">The project is a collaboration between the
</span><a href="https://usr-lab.com"><span lang="EN-GB" style="color:black">Uppsala Social Robotics Lab</span></a><span lang="EN-GB" style="color:black"> (Prof. Ginevra Castellano) and the
</span><a href="https://www.it.uu.se/research/visual_information_and_interaction/research/mida"><span lang="EN-GB" style="color:black">MIDA (Methods for Image Data Analysis) group</span></a><span lang="EN-GB" style="color:black"> (Dr. Joakim Lindblad) at the
Department of Information Technology, and the </span><a href="https://psyk.uu.se/uppsala-child-and-baby-lab/research/"><span lang="EN-GB" style="color:black">Uppsala Child and Baby Lab</span></a><span lang="EN-GB" style="color:black"> (Prof. Gustaf Gredebäck)
at the Department of Psychology of Uppsala University.<o:p></o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><span lang="EN-GB" style="color:black">The student will be part of the Uppsala Social Robotics Lab at the Division of Visual Information and Interaction of the Department of Information Technology, and contribute
to lab’s projects on the topic of co-adaptation in human-robot interactions. The student will also join the
</span><a href="https://www.math.uu.se/research/cim/research-at-cim/graduate-school/"><span lang="EN-GB" style="color:black">Graduate school of the Centre for Interdisciplinary Mathematics (CIM)</span></a><span lang="EN-GB" style="color:black">.<o:p></o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><span lang="EN-GB" style="color:black">The Uppsala Social Robotics Lab’s focus is on natural interaction with social artefacts such as robots and embodied virtual agents. This domain concerns bringing together
multidisciplinary expertise to address new challenges in the area of social robotics, including mutual human-robot co-adaptation, multimodal multiparty natural interaction with social robots, multimodal human affect and social behaviour recognition, multimodal
expression generation, robot learning from users, behaviour personalization, effects of embodiment (physical robot versus embodied virtual agent) and other fundamental aspects of human-robot interaction (HRI). State of the art robots are used, including the
Pepper, Nao and Furhat robotic platforms.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:6.0pt;text-align:justify"><span lang="EN-GB" style="color:black">The fully funded PhD position is for four years.
<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">--<o:p></o:p></p>
<p class="MsoNormal">Dr. Ginevra Castellano<o:p></o:p></p>
<p class="MsoNormal">Professor <o:p></o:p></p>
<p class="MsoNormal">Director, Uppsala Social Robotics Lab<o:p></o:p></p>
<p class="MsoNormal"><a href="https://usr-lab.com">https://usr-lab.com</a> <o:p></o:p></p>
<p class="MsoNormal">Department of Information Technology<o:p></o:p></p>
<p class="MsoNormal">Uppsala University<o:p></o:p></p>
<p class="MsoNormal">Box 337, 751 05 Uppsala, Sweden<o:p></o:p></p>
<p class="MsoNormal">Webpage: <a href="http://user.it.uu.se/~ginca820/">http://user.it.uu.se/~ginca820/</a><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<!DOCTYPE html>
<title>Page Title</title>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
När du har kontakt med oss på Uppsala universitet med e-post så innebär det att vi behandlar dina personuppgifter. För att läsa mer om hur vi gör det kan du läsa här: http://www.uu.se/om-uu/dataskydd-personuppgifter/
<br>
<br>
E-mailing Uppsala University means that we will process your personal data. For more information on how this is performed, please read here: http://www.uu.se/en/about-uu/data-protection-policy
</body>
</html>